8,464 research outputs found

    Excisional treatment of cavernous hemangioma of the liver

    Get PDF
    Fifteen patients had hepatic hemangiomas removed with liver resections that ranged in extent from local excision to right trisegmentectomy. There was no mortality and little morbidity. The propriety and feasibility of extirpative treatment of such liver tumors has been emphasized by this experience

    Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing

    Get PDF
    We present large-scale reproducible fabrication of multifunctional ultrasharp metallic structures on planar substrates with capabilities including magnetic field nanofocusing and plasmonic sensing. Objects with sharp tips such as wedges and pyramids made with noble metals have been extensively used for enhancing local electric fields via the lightning-rod effect or plasmonic nanofocusing. However, analogous nanofocusing of magnetic fields using sharp tips made with magnetic materials has not been widely realized. Reproducible fabrication of sharp tips with magnetic as well as noble metal layers on planar substrates can enable straightforward application of their material and shape-derived functionalities. We use a template-stripping method to produce plasmonic-shell-coated nickel wedge and pyramid arrays at the wafer-scale with tip radius of curvature close to 10 nm. We further explore the magnetic nanofocusing capabilities of these ultrasharp substrates, deriving analytical formulas and comparing the results with computer simulations. These structures exhibit nanoscale spatial control over the trapping of magnetic microbeads and nanoparticles in solution. Additionally, enhanced optical sensing of analytes by these plasmonic-shell-coated substrates is demonstrated using surface-enhanced Raman spectroscopy. These methods can guide the design and fabrication of novel devices with applications including nanoparticle manipulation, biosensing, and magnetoplasmonics

    Laser Generation of Narrow Band Ultrasound

    Get PDF
    Laser based sensor systems to replace conventional piezoelectric contact transducers for ultrasonic testing continue under development for applications where contact with the specimen surface is undesirable or impossible. To date, such systems are considerably less sensitive than their piezoelectric counterparts. As a result, a great deal of effort has contributed to the development of a number of interferoroetric transducer systems to detect ultrasound. Increasingly, however, researchers have begun looking at laser ultrasonic sources to see what improvements might be made to enhance overall system sensitivity for laser generation and detection of ultrasound

    Predicting and comparing three corrective techniques for sagittal craniosynostosis

    Get PDF
    Sagittal synostosis is the most occurring form of craniosynostosis, resulting in calvarial deformation and possible long-term neurocognitive deficits. Several surgical techniques have been developed to correct these issues. Debates as to the most optimal approach are still ongoing. Finite element method is a computational tool that’s shown to assist with the management of craniosynostosis. The aim of this study was to compare and predict the outcomes of three reconstruction methods for sagittal craniosynostosis. Here, a generic finite element model was developed based on a patient at 4 months of age and was virtually reconstructed under all three different techniques. Calvarial growth was simulated to predict the skull morphology and the impact of different reconstruction techniques on the brain growth up to 60 months of age. Predicted morphology was then compared with in vivo and literature data. Our results show a promising resemblance to morphological outcomes at follow up. Morphological characteristics between considered techniques were also captured in our predictions. Pressure outcomes across the brain highlight the potential impact that different techniques have on growth. This study lays the foundation for further investigation into additional reconstructive techniques for sagittal synostosis with the long-term vision of optimizing the management of craniosynostosis

    Deep Video Generation, Prediction and Completion of Human Action Sequences

    Full text link
    Current deep learning results on video generation are limited while there are only a few first results on video prediction and no relevant significant results on video completion. This is due to the severe ill-posedness inherent in these three problems. In this paper, we focus on human action videos, and propose a general, two-stage deep framework to generate human action videos with no constraints or arbitrary number of constraints, which uniformly address the three problems: video generation given no input frames, video prediction given the first few frames, and video completion given the first and last frames. To make the problem tractable, in the first stage we train a deep generative model that generates a human pose sequence from random noise. In the second stage, a skeleton-to-image network is trained, which is used to generate a human action video given the complete human pose sequence generated in the first stage. By introducing the two-stage strategy, we sidestep the original ill-posed problems while producing for the first time high-quality video generation/prediction/completion results of much longer duration. We present quantitative and qualitative evaluation to show that our two-stage approach outperforms state-of-the-art methods in video generation, prediction and video completion. Our video result demonstration can be viewed at https://iamacewhite.github.io/supp/index.htmlComment: Under review for CVPR 2018. Haoye and Chunyan have equal contributio

    Using Sensitivity Analysis to Develop a Validated Computational Model of Post-operative Calvarial Growth in Sagittal Craniosynostosis

    Get PDF
    Craniosynostosis is the premature fusion of one or more sutures across the calvaria, resulting in morphological and health complications that require invasive corrective surgery. Finite element (FE) method is a powerful tool that can aid with preoperative planning and post-operative predictions of craniosynostosis outcomes. However, input factors can influence the prediction of skull growth and the pressure on the growing brain using this approach. Therefore, the aim of this study was to carry out a series of sensitivity studies to understand the effect of various input parameters on predicting the skull morphology of a sagittal synostosis patient post-operatively. Preoperative CT images of a 4-month old patient were used to develop a 3D model of the skull, in which calvarial bones, sutures, cerebrospinal fluid (CSF), and brain were segmented. Calvarial reconstructive surgery was virtually modeled and two intracranial content scenarios labeled “CSF present” and “CSF absent,” were then developed. FE method was used to predict the calvarial morphology up to 76 months of age with intracranial volume-bone contact parameters being established across the models. Sensitivity tests with regards to the choice of material properties, methods of simulating bone formation and the rate of bone formation across the sutures were undertaken. Results were compared to the in vivo data from the same patient. Sensitivity tests to the choice of various material properties highlighted that the defined elastic modulus for the craniotomies appears to have the greatest influence on the predicted overall skull morphology. The bone formation modeling approach across the sutures/craniotomies had a considerable impact on the level of contact pressure across the brain with minimum impact on the overall predicated morphology of the skull. Including the effect of CSF (based on the approach adopted here) displayed only a slight reduction in brain pressure outcomes. The sensitivity tests performed in this study set the foundation for future comparative studies using FE method to compare outcomes of different reconstruction techniques for the management of craniosynostosis

    Comparison of next-generation portable pollution monitors to measure exposure to PM2.5 from household air pollution in Puno, Peru.

    Get PDF
    Assessment of personal exposure to PM2.5 is critical for understanding intervention effectiveness and exposure-response relationships in household air pollution studies. In this pilot study, we compared PM2.5 concentrations obtained from two next-generation personal exposure monitors (the Enhanced Children MicroPEM or ECM; and the Ultrasonic Personal Air Sampler or UPAS) to those obtained with a traditional Triplex Cyclone and SKC Air Pump (a gravimetric cyclone/pump sampler). We co-located cyclone/pumps with an ECM and UPAS to obtain 24-hour kitchen concentrations and personal exposure measurements. We measured Spearmen correlations and evaluated agreement using the Bland-Altman method. We obtained 215 filters from 72 ECM and 71 UPAS co-locations. Overall, the ECM and the UPAS had similar correlation (ECM ρ = 0.91 vs UPAS ρ = 0.88) and agreement (ECM mean difference of 121.7 µg/m3 vs UPAS mean difference of 93.9 µg/m3 ) with overlapping confidence intervals when compared against the cyclone/pump. When adjusted for the limit of detection, agreement between the devices and the cyclone/pump was also similar for all samples (ECM mean difference of 68.8 µg/m3 vs UPAS mean difference of 65.4 µg/m3 ) and personal exposure samples (ECM mean difference of -3.8 µg/m3 vs UPAS mean difference of -12.9 µg/m3 ). Both the ECM and UPAS produced comparable measurements when compared against a cyclone/pump setup

    Twin pregnancy in a liver transplant recipient with HIV infection

    Get PDF
    We are not aware of a report detailing the complex obstetrical and medical management of twin pregnancy in the context of HIV infection and early post-liver transplantation period. Here we describe the successful outcome of a twin pregnancy in a 28-year-old HIV-positive female receiving antiretroviral therapy and immunosuppressive therapy who was the recipient of a liver transplant for previous drug-induced liver failure

    A probabilistic analysis of argument cogency

    Get PDF
    This paper offers a probabilistic treatment of the conditions for argument cogency as endorsed in informal logic: acceptability, relevance, and sufficiency. Treating a natural language argument as a reason-claim-complex, our analysis identifies content features of defeasible argument on which the RSA conditions depend, namely: change in the commitment to the reason, the reason’s sensitivity and selectivity to the claim, one’s prior commitment to the claim, and the contextually determined thresholds of acceptability for reasons and for claims. Results contrast with, and may indeed serve to correct, the informal understanding and applications of the RSA criteria concerning their conceptual dependence, their function as update-thresholds, and their status as obligatory rather than permissive norms, but also show how these formal and informal normative approachs can in fact align

    The influence of intercalating perfluorohexane into lipid shells on nano and microbubble stability

    Get PDF
    Microbubbles are potential diagnostic and therapeutic agents. In vivo stability is important as the bubbles are required to survive multiple passages through the heart and lungs to allow targeting and delivery. Here we have systematically varied key parameters affecting microbubble lifetime to significantly increase in vivo stability. Whilst shell and core composition are found to have an important role in improving microbubble stability, we show that inclusion of small quantities of C6F14 in the microbubble bolus significantly improves microbubble lifetime. Our results indicate that C6F14 inserts into the lipid shell, decreasing surface tension to 19 mN m-1, and increasing shell resistance, in addition to saturating the surrounding medium. Surface area isotherms suggest that C6F14 incorporates into the acyl chain region of the lipid at a high molar ratio, indicating ∼2 perfluorocarbon molecules per 5 lipid molecules. The resulting microbubble boluses exhibit a higher in vivo image intensity compared to commercial compositions, as well as longer lifetimes
    corecore